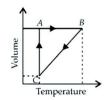


CHEMISTRY

CRASH COURSE

LECTURE - 04

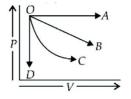

TOPICS : Thermodynamics

1. C_v values for monoatomic and diatomic gases respectively are

(a)
$$\frac{1}{2}R, \frac{3}{2}R$$
 (b) $\frac{3}{2}R, \frac{5}{2}R$

(c)
$$\frac{5}{2}$$
 R, $\frac{7}{2}$ R (d) $\frac{3}{2}$ R, $\frac{3}{2}$ R

- 2. In a reversible process $\Delta S_{sys} + \Delta S_{surr}$ is
 - (a) > 0 (b) < 0
 - $(c) \ge 0 \qquad (d) = 0$
- 3. Which of the following relationship is correct?
 - (a) $\Delta G^{\circ} = RT \ln K$
 - (b) $K = e^{-\Delta G^{\circ}/RT}$
 - (c) K = $10^{-\Delta G^{\circ/2.303RT}}$
 - (d) All are correct
- 4. ΔH and ΔS for the reaction $Ag_2O_{(s)} \rightarrow 2Ag_{(s)}$ are 30.56 KJ mol⁻¹ and 66.00 JK⁻¹ respectively. The temperature at which the free energy change for the reaction will be zero is
 - (a) 463 K (b) 35440 K
 - (c) 20 K (d) 483 K
- Five moles of a gas is put through a series of changes as shown graphically in a cyclic process. The process A → B, B → C and C→ A respectively are



- (a) isochoric, isobaric, isothermal
- (b) isoboric, isochoric, isothermal
- (c) isothermal, isobaric, isochoric
- (d) isochoric, isothermal, isobaric

- 6. A certain reaction has a ΔH of 12 KJ and a ΔS of 40 J K⁻¹. The temperature above which the reaction becomes spontaneous is
 - (a) 27°C (b) 27 K
 - (c) 300°C (d) 30°C
- 7. The standard Gibbs free energy change(ΔG°) at 25°C for the dissociation of N₂O_{4(g)} to NO_{2(g)} is (given, equilibrium cont. = 0.15,

R= 8.314 J K/mol)

- (a) 1.1 kJ (b) 4.7 kJ
- (c) 8.1 kJ (d) 38.2 kJ
- 8. Identify the state quantity among the following
 - (a) q (b) $q \omega$
 - (c) $q + \omega$ (d) q/ω
- 9. For which of the following process $q = \Delta U$?

(a) $\mathbf{O} \rightarrow \mathbf{A}$	(b) $O \rightarrow D$
(c) $\mathbf{O} \rightarrow \mathbf{B}$	(d) $O \rightarrow C$

- 10. For which of the following process $\Delta G^{\circ} \Delta H^{\circ}$ is almost equal to zwero ?
 - (a) $\operatorname{CaCO}_{3(s)} \rightarrow \operatorname{CaO} + \operatorname{CO}_{2(g)}$ (b) $\operatorname{FeSO}_{4(s)} + \operatorname{Zn}_{(s)} \rightarrow \operatorname{ZnSO}_{4(s)} + \operatorname{Fe}_{(g)}$ (c) $\operatorname{Zn}_{(s)} + \operatorname{H}_2 \operatorname{SO}_{4(g)} \rightarrow \operatorname{ZnSO}_{4(s)} + \operatorname{H}_{2(g)}$ (d) $\operatorname{H}_{2(g)} + \operatorname{Cl}_{2(g)} \rightarrow 2\operatorname{HCL}_{(g)}$

AVIRAL CLASSES

CHEMISTRY CRASH COURSE

LECTURE - 4

T-JEE | NEET | FOUNDATIONS

TOPICS : Thermodynamics

(SOLUTION)

- 1. **(b)**: For monoatomic gas, $C_v = \frac{3}{2}R$ For diatomic gas, $C_v = \frac{5}{2}R$
- **2.** (d): For a reversible process, $\Delta S_{sys} + \Delta S_{surr} = 0$.
- **3.** d
- 4. (a) : According to Gibb's-Helmholtz equation, $\Delta G = \Delta H - T \Delta S$ At equilibrium, $\Delta G = 0$ so that $0 = \Delta H - T\Delta S$ or $\Delta H = T\Delta S$ $T = \frac{\Delta H}{\Delta S}$ or Here, $\Delta H = 30.56 \text{ kJ mol}^{-1} = 30560 \text{ J mol}^{-1}$ $\Delta S = 66.0 \text{ J K}^{-1} \text{ mol}^{-1}$

$$\therefore T = \frac{30560}{66.0} = 463 \text{ K}$$

5.

(a) : Process $A \longrightarrow B$ is isochoric, *i.e.*, volume remains constant. Process $B \longrightarrow C$ is isobaric, *i.e.*, pressure remains constant. Process $C \longrightarrow A$ is isothermal, *i.e.*, temperature remains

constant.

6. (a) : At equilibrium, $\Delta H = T\Delta S$

$$T = \frac{\Delta H}{\Delta S} = \frac{12 \times 10^3}{40} = 300 \text{ K}$$

Above 27°C, the reaction becomes spontaneous.

7. (b): $\Delta G^{\circ} = -RT \ln K$

8. (c) :
$$\therefore q_{abs} = \Delta U + (-w)$$

 $\therefore \Delta U = q + w; \Delta U$ is state function.

- **9. (b)**: The process at O D completed at constant volume so, $\Delta V = 0$ as $W = P\Delta V = 0$, then $\Delta U = q - W$ $\Delta U = q - 0 = q$
- **10.** (b) : $\Delta G^{\circ} = \Delta H^{\circ} T \Delta S^{\circ}$

Change in entropy for solid reactants and products is almost equal to zero $\Delta G^{\circ} = \Delta H^{\circ} - 0$ $\Delta G^{\circ} - \Delta H^{\circ} = 0$

In (b) all reactants and products are solids.

: (b) is correct answer.